فروشگاه بزرگ الماس

این فروشگاه اینترنتی آمادگی خود را جهت ارائه انواع فایل های الکترونیک، پروژه های مختلف دانشجویی و صنعتی، کتاب ها و جزوات و دانشگاهی اعلام کرده و در این زمینه فعالیت خود را آغاز کرده است

فروشگاه بزرگ الماس

این فروشگاه اینترنتی آمادگی خود را جهت ارائه انواع فایل های الکترونیک، پروژه های مختلف دانشجویی و صنعتی، کتاب ها و جزوات و دانشگاهی اعلام کرده و در این زمینه فعالیت خود را آغاز کرده است

بررسی ایستایی (ساکن بودن) سری های زمانی

قبل از تخمین مدل، به بررسی ایستایی می پردازیم می توان چنین تلقی نمود که هر سری زمانی توسط یک فرآیند تصادفی تولید شده است
دسته بندی برق
بازدید ها 21
فرمت فایل doc
حجم فایل 52 کیلو بایت
تعداد صفحات فایل 22
بررسی ایستایی (ساکن بودن) سری های زمانی

فروشنده فایل

کد کاربری 1024
کاربر

بررسی ایستایی (ساکن بودن) سری های زمانی


بررسی ایستایی (ساکن بودن) سری های زمانی[1]

قبل از تخمین مدل، به بررسی ایستایی می پردازیم. می توان چنین تلقی نمود که هر سری زمانی توسط یک فرآیند تصادفی تولید شده است. داده های مربوط به این سری زمانی در واقع یک مصداق از فرآیند تصادفی زیر ساختی است. وجه تمایز بین (فرآیند تصادفی) و یک (مصداق) از آن، همانند تمایز بین جامعه و نمونه در داده های مقطعی است. درست همانطوری که اطلاعات مربوط به نمونه را برای استنباطی در مورد جامعه آماری مورد استفاده قرار می دهیم، در تحلیل سریهای زمانی از مصداق برای استنباطی در مورد فرآیند تصادفی زیر ساختی استفاده می کنیم. نوعی از فرآیندهای تصادفی که مورد توجه بسیار زیاد تحلیل گران سریهای زمانی قرار گرفته است فرآیندهای تصادفی ایستا می باشد.

برای تاکید بیشتر تعریف ایستایی، فرض کنید Yt یک سری زمانی تصادفی با ویژگیهای زیر است:

(1) : میانگین

(2) واریانس :

(3) کوواریانس :

(4) ضریب همبستگی :

که در آن میانگین ، واریانس کوواریانس (کوواریانس بین دو مقدار Y که K دوره با یکدیگر فاصله دارند، یعنی کوواریانس بین Yt و Yt-k) و ضریب همبستگی مقادیر ثابتی هستند که به زمان t بستگی ندارند.

اکنون تصور کنید مقاطع زمانی را عوض کنیم به این ترتیب که Y از Yt به Yt-k تغییر یابد. حال اگر میانگین، واریانس، کوواریانس و ضریب همبستگی Y تغییری نکرد، می توان گفت که متغیر سری زمانی ایستا است. بنابراین بطور خلاصه می توان چنین گفت که یک سری زمانی وقتی ساکن است که میانگین، واریانس، کوواریانس و در نتیجه ضریب همبستگی آن در طول زمان ثابت باقی بماند و مهم نباشد که در چه مقطعی از زمان این شاخص ها را محاسبه می کنیم. این شرایط تضمین می کند که رفتار یک سری زمانی، در هر مقطع متفاوتی از زمان، همانند می باشد[2].

آزمون ساکن بودن از طریق نمودار همبستگی و ریشه واحد[3]

یک آزمون ساده برای ساکن بودن براساس تابع خود همبستگی (ACF) می باشد. (ACF) در وقفه k با نشان داده می شود و بصورت زیر تعریف می گردد.



[1] Stationary

[2] ریشه واحد و هم جمعی در اقتصاد سنجی- محمد نوفرستی- موسسه فرهنگی رسا- چاپ اول- 1378.

[3] Correlogram and Unit root test of stationary


توجه: شما عزیزان میتوانید از اینجا وارد فروشگاه بزرگ الماس شده و دیگر محصولات و پروژه های مشابه را بیابید
نظرات 0 + ارسال نظر
امکان ثبت نظر جدید برای این مطلب وجود ندارد.